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THE FOR~TION OF A SELFSIMI~R SOLUTION FOR THE PROBLEM OF NON-LINEAR WAVES 
IN AN ELASTIC HALF-SPACE* 

A.P. CHUGAINOVA 

Motions intheform of planar non-linear quasitransverse waves in a weekly non-isotropic 
elastic medium are studied. The selfsimilar problem of the action of a sudden load on the 
boundary of an elastic half-space has been considered previously /l-3/. The solution of the 
above-mentioned selfsimilar problem in a certain domain of the specified parameters was found 
to be non-unique (2 solutions). On account of this, the question arises as to in which cases 
one or the other solutions is realized in the domain of non-uniqueness. The question of the 
selection of the unique solution has been discussed in a number of papers /4-8,'. In particular 
a condition for the existence of structure /6-8/ was required for the choice of the solution. 
An investigation of the structure of the discontinuities in the selfsimilar problem of the 
action of a suddenly applied load on the boundary of an elastic half-space /9/ showed that all 
the discontinuities occurring in the solutions (when there are two solutions) possess a 
structure and did not provide any grounds for preferring one solution over the other. In the 
present paper the selfsimilar asymptotic forms for a number of non-selfsimilar problems are 
found numerically in order to select the unique solutio:? and these asymptotic forms are 
obtained in a similar manner to that used in /4/ in the case of problems in hydrodynamics. 

In order to simplfy the calculations, use is made of the approximate equations /lo/ which 
describe weakly non-linear quasitransverse waves in an elastic medium with a small anisotropy 
which propagate in only one direction. 

Here Wi are the displacements of the particles which are considered as a function of the 
Lagrangian coordinates, ~1, zp, Q = z,T,~ are the components of the viscous stress tensor, 
is the density in the unstressed state, ~1 is the Lame'elastic coefficient, Y 

p0 
is the kine- 

matic coefficientofviscoSity,'x, is a constant with the dimensions of velocity which character- 
izes the non-linear effects, f and g are constants.and, moreover, q is a (small) anisotropy 
parameter, and f is the characteristic velocity when there is no anisotropy and non-linearity. 
The function R plays the role of an elastic potential. System fl) contains two equations for 
the shear components of the deformations, and the longitudinal components of the deformations 
us are expressed in terms of the shear components (as in /lo/). 

A numerical calculation was carried out for different values of the coefficients f3 67, Xl 
and Y. Bowever, by passing to a moving coordinate system s*,t*, where I*= z-t&t*= t, and, 
correspondingly, introducing a change in the scales for the quantities ul,uzl Z* and t*, system 
(1) can be reduced to a form such that f=O,g= x1= v= 1. Hence, the solutions which are 
obtained and described below can be recalculated to give the solutions of the universal 
equations obtained in this manner and vice versa. 

The simple waves and shock waves (SW) which correspond to the simplified equations with- 
out dissipative terms and the structures of the shock waves are in agreement to an acceptable 
degree of accuracy with those obtained in /l-3, 9/ where the exact equations describing the 
propagation of non-linear, quasitransverse waves were taken as the initial equations but 
approximate methods of solution were used. 

It has been shown /3/ in the case oftheselfsimifar problem of a sudden change of the 
load on the boundary of an elastic half-space that two solutions exist in a certain domain of 
values of IQ* and u** for small values of the expression Zg/[(U*+ 1;*)x,l 

Below, we present the results of the numerical solution of a number of initial-boundary 
value problems for Eqs.(l) with viscous terms in the case of which the above-mentioned self- 
similar solutions can exhibit asymptotic forms as t-w. Eqs.(l) were written in the form of 
implicit non-linear difference equations to which Newton's method was initially applied 
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followed by matrix pivotal condensation /ll/. The calculationwas carried out in an >,I 

domain bounded by a segment of the .r-axis and fixed right and left boundaries. 

The waves contained in the solution have different velocities of propagation and, there- 

fore, as the computational time interval t between the individual perturbations increases, 

segments will appear, the length of which grows as t increases, which correspond to constant 

values of q and Us. while the structure of the SL! as t-cu will tend to become stationary. 

hence, in order to identify the waves which are obtained from the numerical calculation with 

the waves occurring in the composition of selfsimilar solutions of the first or second kinds, 

it is necessary to obtain a difference solution at large times t in order to successfully 

complete the above-mentioned processes. On the other hand, as t increases, the difference 

solution is propagated onto a large number of mesh points. On account of this, it is 

necessary that a sufficiently large interval of the s-axis be taken in order that the effect 

of the right-hand boundary should not distort the solution. The effect of the left boundary 

on the solution is removed by a corresponding choice of the coefficient f which was chosen in 

such a way that perturbations were propagated to the right. 
The numerically constructed shock adiabatic curve APQALC (the initial point A (1, 1)) 

is shown in Fig.1. The points J and E are Jouguet points while the points Q and P depict 

states such that the shock waves A -Q,A -P propagate at the same velocity as the shock wave 

A-J. The domain where the selfsimilar solution (a value of 0.1 was adopted for the 

anisotropy factor 2glx,) is non-unique is hatched in. This domain is bounded by the interval 

FE of the shock adiabatic from the initial point A, the evolutionary interval of the shock 

adiabatic QP, constructed from the point Q as the initial point and by the intervals EZ, and 

QG of the integral curves of the simple undisturbed waves. 

Fig.1 

a 
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In one of the versions of the calculation, the initial conditions (t=O) and the con- 

dition on the right boundary (t>O,s= I) were taken in the form I+= 1,u, = 1 (point A). The 

values u1 = -0,574 and += -0.038 were taken on the left boundary (t>O, z=O) (point B from 

the domain where the solution is non-unique). The results of the numerical calculation for a 

certain instant of time are shown in Fig.2, a where it is possibletopick out the shock waves 

which are identified with the shock waves which have been considered theoretically: a sequence 

of two shock waves (from their structure) consisting of a fast and a slow shock wave (the 

transition from point A to point Q, and from point Q1 to point 6) Figs.1 and 2a. 

The intervals of the r-axis (which are picked out by the dotted and dashed lines in 

Fig.2,a) correspond to the points A, B and Q1in Fig.1. The values of u1 and up take constant 

values in these intervals. It was checked that these constant values which represent states 

in front of and behind the shock waves A +Q, and Q1 -B satisfy the equations of the 

corresponding shock adiabatics with an acceptable accuracy. It should be noted that, within 

the structure which corresponds to the shock transition from the point A to the point Q1, the 

magnitude of u1 has a local maximum (Fig.2,a). This is in accord with a qualitative invest- 

igation /9/ of the solutions representing the structure of the corresponding shock waves. 

Similar versions of the calculation were also carried out for other values of u1 and u1 

on the left boundary of the +,t domain which correspond to points from the domain of non- 

uniqueness, the coordinates of which were: 

,,; -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 --i -1 --2,1 

1,; -0.1 -0.2 -0.2 -0.3 -0.35 -0.3 -0.3 -0.34 -0.25 

A solution of the first type was realized in all cases. 

The calculations showed that a solution of the second type for values of u1 and u1 on 

the left boundary which correspond to points from the domain of non-uniqueness can be formed 

in the following manner. First, it is necessary to form completely a solution of the second 
type for I+ and uI on the left boundary which correspond to a point from the region of 
uniqueness. In order to do this the coordinates u1 and uI of a point, which does not belong 

to the domain of non-uniqueness (point B, in Fig.1) but which lies fairly close to the 

boundary of this region, were taken as the condition on the left boundary. The values of u1 

and uI on the left boundary were then changed to values which belong to the domain of non- 
uniqueness (point B, in Fig.1). This leads to a state of affairs where small perturbations 
will propagate from the left boundary to the right. After waves which have previously been 

formed interact with these perturbations, the solution at large times must emerge onto a 

certain selfsimilar asymptotic form. A calculation has shown that it does not change its 

type. 
The results of the calculation are shown in Fig.2,b where it is possible to pick out a 

sequence of simple waves and shock waves which completely correspond to a solution of the 

second type: a fast Jouguet shock wave, that is, the jump from point A to point J and then 

a fast simple wave, that is, the interval of the integral curve JL, a fast Jouguet shock wave 

(the jump from L to M) and, then, the jump of the slow shock wave from M to B2. The segment 

JL, which corresponds to a simple wave has been separated out in Fig.2,b by comparison of the 

solutions at two successive instants of time. The graph of the solution for the instant of 

time tl is depicted by the solid line and, for the instant of time f2> tl, by the broken line 

on that part ofthecurve where the graphs do not coincide at instants of time tl and t2, and 

by a solid line where they do coincide. The interval JL broadens with the passage of time 

while the intervals which correspond to the structures of the jumps A +J and L-M do not 

change. 

The intervals on the z-axis where the values of u1 and ~1~ are constant in Fig.2,b 

correspond to the points A, M and B, in Fig.1 while the interval of the curve, which corresponds 

to the point M in Pig.1, is depicted by the break. This means that some of the computed 

points are not shown andthe values of u1 and Y% at these points are equal to U, and ut up 

to and after the break in the graph. The magnitude of u1 has a local maximum within the 

structure of the jumps from the initial point A to the point J while the magnitude of uI has 
a local maximum in the structure of the jump from point M to point L. This is in agreement 

with the integral curves in /9/. 

The results which have been obtained therefore show that, as t-co, the solution of a 

non-selfsimilar problem may tend to the different solutions of the limiting selfsimilar 

problem (if its solutions is non-unique) depending on the details of the formulation of the 

initial and boundary conditions corresponding to bounded values of time. 
It is impossible to subdivide explicitly all the initial and boundary conditions into 

two classes corresponding to the different asymptotic behaviour as t-m. However, if we 

confine ourselves to a treatment of formulations of problems in which continuous functions 

with bounded derivatives occur, then, for the unique extension of the solutions with respect 

to time as v-0, it is necessary to know how to solve problems on the interaction of two 

shock waves or the interaction between a shock wave and a small perturbation (the collision of 
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a large number of waves of low probability). In doing this, there is, of course, interest in 
cases when the corresponding selfsimilar solution is non-unique. 

On account of this, the problem of the interaction of two shock waves, one of which 
catches up the other, was considered. For this purpose, a structure of the slow shock wave 
was formed which corresponds totheevolutionary jump from point A to point A, (Fig.1) and a 
structure for the fast shock wave which catches it up, which corresponds to the evolutionary 
jump from the point A, to point B (Fig.1). Point B is located on the shock adiabatic curve 
traced from the point A I as the initial point and belongs to the domain of non-uniqueness of 
the solution of the selfsimilar problem corresponding to point A as the initial point. A 

calculation showed that two other shock waves are formed as a result oftheinteraction of 

these two shock waves. A fast shock wave travels forward with a slow shock wave behind it 

and the solution therefore emerges onto the selfsimilar asymptotic form which corresponds to 

a solution of the first type of the selfsimilar problem of the change in a load on the boundary 

of an elastic half-space. 

The problem of the interaction of a fast shock wave, corresponding to the evolutionary 
jump from point A to the point Q1 (or any other point of the evolutionary interval EQ), with 

a small perturbation was also considered. The small perturbation was formed in front of the 
shock wave. The numerical calculations which were carried out showed that a single shock 

wave is formed as a result of the interaction of a shock wave and a small perturbation. 

In accordance with the solution of the selfsimilar problem of a sudden change in the 

load on the boundary of an elastic half-space obtained in /3/, a numerical study was carried 
out into how the form of the solution changes when the points Bi, which represent the left 
boundary condition, lying close to the line EP which separates the domains of whicha solution 

of the first and second kind is realized from above but a solution of the second type from 

below. For this purpose, we obtained the solution for a series of values of u1 and u2 on the 
left boundary, some of which correspond to points lying above the line EP and some which 

correspond to points lying below the line EP: u,* = -0.5, u2*= -0.2, -0.25, -0.3, -0.33, -0.34, -0.345; 

-0.35. A calculation showedthat,in the case of points which depict the state on the left 

boundary and are located above a point with the coordinates (-0.5, -0.34), a solution of the 

first type is realized while, in the case of points lying below this point, a solution of the 

second type is realized. 

Hence, the calculations show that the selfsimilar asymptotic forms of the first type 

(a sequence of a fast shock wave and a slow shock wave or a simple wave) are formed more 

stably (in a certain sense they possess a greater domain of attraction) than the selfsimilar 

asymptotic forms of the second type. In the case of problems with slowly varying initial 

and boundary conditions, the processes involving the interaction of the shock waves which 

arise in the solution will obviously take place just as if the second selfsimilar solution 

did not exist. 

It is interesting to notethata solution of the first type, which arises most frequently 
in calculations, does not satisfy the stability condition with regard to the smoothing of the 

initial function /5, 12/. In essence, the latter condition is a stability condition with 

respect to finite perturbations and, as a numerical calculation shows, the fact that it is 

not satisfied does not lead in the case under consideration to any spontaneous reconstruction 

of the solution. 

The author thanks A.G. Kulikovskii and E-1. Sveshnikova for formulating the problem and 
their remarks during a discussion of the work. 

REFERENCES 

1. SVESHNIKOVA E.I., Simple waves in a non-linear elastic medium, Prikl. Mat. i Mekh., 46, 4, 

1982. 

2. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Investigation of the adiabatic shock curve of quasi- 
transverse shock waves in a previously stressed elastic medium, Prikl. Nat. i Mekh., 46, 
5, 1982. 

3'. KULIKOVSKII A.G. and SVESHNIKOVA E.I., The selfsimilar problem of the action of a sudden 
load on the boundary of an elastic half-space, Prikl. Mat. i Mekh., 49, 2, 1985. 

4. BARMIN A.A. and USPENSKII V.S., Development of pulsed regimes in one-dimensional non- 
stationary MHD-flows with cutoff of electric conductivity, Izv. Akad. Nauk SSSR, hlekh. 
Xhid. i Gas., 4, 1986. 

5. OLEINIK O-A., On a class of discontinuous solutions of first order quasinon-linear equations 

Nauchn. Dokl. Vyssh. Shk. Fiz.-Mat. Nauki, 3, 1958. 
6. GALIN G.YA., On shock waves in media with an arbitrary equation of state, Dokl. Akad. Nauk 

USSR, 119, 6, 1958. 
7. GALIN G.YA., On the theory of shock waves, Dokl. Akad. Nauk SSSR, 127, 1, 1959. 



545 

8. KALASHNIKOV A.S., Construction of generalized solutions of first-order quasilinear equations 

without the condition of convexity as limits of the solutions of parabolic equations with 

a small parameter, Dokl. Akad. Nauk SSSR, 127, 1, 1959. 

9. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Investigation of the structure of quasitransverse 

elastic shock waves, Prikl. Mat. i Mekh., 51, 6, 1987. 

10. KULIKOVSKII A.G., Cm the equations describing the propagation of non-linear quasitransverse 

waves in a weakly anisotropic elastic body, Prikl. Mat. i Mekh., 50, 4, 1988. 

11. SAMAHSKII A.A. and POPOV YU.P., Difference Methods for Solving Problems in Gas Dynamics, 

Nauka, Moscow, 1980. 

12. ROZHDESTVENSKII B.L. and YANENKO N.N., Systems of cuasilinear Equations, Nauka, Moscow, 

1978. 

Translated by E.L.S. 

PMM U.S.S.R.,Vo1.52,No.4,pp.545-547,1988 OO21-8928/88 $lO.C0+0.00 

Printed in Great Britain 01989 Pergamon Press plc 

TRANSIENT ANTIPLANE VIBRATIONS OF A RECTANGULAR ELASTIC SLAB* 

N.V. BOYEV and M.A. SUMBATYAN 

The non-stationary antiplane problem of an elastic rectangle under specified 

stresses on its lateral edge is considered. A solution of the problem in 

Laplace transformshasbeen obtained in the form of a series of homogeneous 
solutions. The use of certain special operator relationships enables one 
to write out the original of the solution in an explicit form. When this 

is done for any instant of time, each homogeneous solution is expressed 

in the form of a finite sum. A numerical analysis of the problem is 

presented and the characteristic features of the behaviour of the stressed 

state in time are established. 

Let us consider the transient vibrations of an elastic slab of infinite length (the y- 

axis) and rectangular cross-section with sides of 2h and 2n.z~ I-h, hl. z~[--(l,al under conditions 

of antiplane deformation caused by forces acting on opposite lateral edges 5 = *i, z E l-h, h] 

ZEv (E353 T) I+*, = f (5. F T); E = da, 5 = z h; 5, 5 E [--I, I] (1) 

Here f(5, T) is an arbitrary function of the variables 5 and the time 'I'. For simplicity, 

let us assume that the edges 5=+1 are free from stresses (T~~J~=~~=O) and the initial 

conditions are: 
~lr~= aviaTiT=o = 0, i < 5, : < i. 

.(o = v (5, 5, T) is the displacement along the y-axis). 

Let us apply a Laplace transform with respect to time to the initial boundary value 

problem. We have 

t = TIT,, E = h/o, p2 = pa*s*/(~T,*) 

Mere, p is the density of the material, p is the shear modulus and To is the character- 

istic time. Since, subject to condition (I), the function V is odd with respect to 5, we 

shall seek it in the form H'(5,1~)shyS, where the function w (5, P) is determined from the 

following selfadjoint boundary value problem 

(2) 

In the case of a problem which is symmetric with respect to c,the eigenfunctions of problem 
(2) have the form 
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